Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nutrients ; 15(21)2023 Nov 05.
Article En | MEDLINE | ID: mdl-37960344

Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.


Diet, High-Fat , Prenatal Exposure Delayed Effects , Animals , Mice , Female , Male , Humans , Diet, High-Fat/adverse effects , Obesity/etiology , Obesity/metabolism , Multiomics , Proteomics , Lactation , Hippocampus/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Prenatal Exposure Delayed Effects/metabolism
2.
Front Mol Neurosci ; 15: 841892, 2022.
Article En | MEDLINE | ID: mdl-35250480

Alzheimer's disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the ß cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic ß-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic ß cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.

3.
Neuropharmacology ; 209: 108999, 2022 05 15.
Article En | MEDLINE | ID: mdl-35181375

Due to the pathophysiological complexity of Alzheimer's disease, multitarget approaches able to mitigate several pathogenic mechanisms are of interest. Previous studies have pointed to the neuroprotective potential of Doxycycline (Dox), a safe and inexpensive second-generation tetracycline. Dox has been particularly reported to slow down aggregation of misfolded proteins but also to mitigate neuroinflammatory processes. Here, we have evaluated the pre-clinical potential of Dox in the APP/PS1 mouse model of amyloidogenesis. Dox was provided to APP/PS1 mice from the age of 8 months, when animals already exhibit amyloid pathology and memory deficits. Spatial memory was then evaluated from 9 to 10 months of age. Our data demonstrated that Dox moderately improved the spatial memory of APP/PS1 mice without exerting major effect on amyloid lesions. While Dox did not alleviate overall glial reactivity, we could evidence that it rather enhanced the amyloid-dependent upregulation of several neuroinflammatory markers such as CCL3 and CCL4. Finally, Dox exerted differentially regulated the levels of synaptic proteins in the hippocampus and the cortex of APP/PS1 mice. Overall, these observations support that chronic Dox delivery does not provide major pathophysiological improvements in the APP/PS1 mouse model.


Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Doxycycline/pharmacology , Doxycycline/therapeutic use , Hippocampus/metabolism , Mice , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism
...